CPU, DSP, GPU, FPGA对比

学习于Qiuoooooo

CPU

            一般来说CPU运算能力最弱,CPU虽然主频最高,但是单颗也就8核、16核的样子,一个核3.5g,16核也就56g,再考虑指令周期,每秒最多也就30g次乘法。还是定点的。

DSP

            DSP虽然主频不如CPU,但是胜在乘法器多,随随便便带16个乘法器,还是浮点的。再来个4核,8核,还有特定的算法硬件加速,所以虽然主频只有1,2g但是运算能力还是比CPU强。当然现在出现了带专用乘法器的CPU,DSP也集了ARM核,这两个的界限开始模糊了。
            DSP所有计算均使用浮点算法,而且目前还没有位或整数运算指令

GPU

            GPU专为图像处理设计,主频一般在500mhz左右,但是核多啊,比如titan,有380多个流处理单元,500*400就是200g这个量级,远大与于前面2者了。

FPGA

            FPGA的运算能力的,拿高端的来说。3000多个固定乘法器,拿数字逻辑还能搭3000个,最快能到接近300mhz, 也就是1800g这个量级。

总结:

            ① 这几个应用场合不同,CPU虽然运算不行,但是擅长管理和调度,比如读取数据,管理文件,人机交互等,例程多,辅助工具也很多。
            ② DSP相比而言管理弱了,运算加强了。这两者都是靠高主频来解决运算量的问题,适合有大量递归操作以及不便拆分的算法。
            ③ GPU管理更弱,运算更强,但由于是多进程并发,更适合整块数据进行流处理的算法
            ④ FPGA能管理能运算,但是开发周期长,复杂算法开发难度大。适合流处理算法,不管是整块数据进还是一个一个进。还有实时性来说,FPGA是最高的。前3种处理器为了避免将运算能力浪费在数据搬运上,一般要求累计一定量数据后才开始计算,产生群延时,而FPGA所有操作都并行,因此群延时可以很小

CPU和GPU对比:

在这里插入图片描述

            上图是CPU与GPU内部结构上的对比,总体上来说二者都是由**控制器(Control),寄存器(Cache、DRAM)和逻辑单元(ALU:Arithmetic Logic Unit)**构成。但是三者的比例却有很大的不同。在CPU中控制器和寄存器占据了结构中很大一部分,与之相反,在GPU中,逻辑单元的规模则是远远超过其他二者之和。这种不同的构架就决定了CPU在指令的处理/执行,函数的调用上有着很好的发挥,但由于逻辑单元所占比重较小,相对于GPU而言,在数据的处理方面(算术运算或者逻辑运算)的能力就弱了很多。

相关推荐
M/D-CAP3U是天津雷航光电科技有限公司推出的一款复合加速计算平台,由Xilinx的28nm制程的FPGA — XC7K325T-3FFG900I和NVidia的16nm制程的GPU — TX2互联构成。 产品细节 FPGA的前端接口 支持CameraLink Base输入1路 支持SD-SDI / HD-SDI / 3G-SDI输入1路 支持同轴高清STP视频输入1路 支持D1标清模拟视频输入4路 支持CameraLink Base输出1路 支持DVI / HDMI输出1路 支持同轴高清STP视频输出1路 TX2 GPU扩展出的接口 10 / 100 / 1000三速自适应以太网 HDMI输出(micro-HDMI连接器) USB3.0 / USB2.0输出 系统存储接口 支持SATA硬盘(mSATA连接器) 支持NVME-SSD硬盘(M.2 M Key连接器) FPGA性能指标及功能描述 板载1GByte DDR3-1600内存(FPGA挂接的DDR3) 强大的Kintex-7 FPGA专注于浮点高密运算 / 算法预处理 / 算法加速 / 前端接口管理等功能 TX2-FPGA的PCIE带宽是800MB/s ~ 1.2GB/s 存储及使用环境 存储温度 :-55℃~125℃ 工作温度 :-45℃~80℃ 工作时相对湿度 :20%~80% 震动冲击 :±35g 可靠性 :MTBF ≥ 5000h 维修性 :MTTR ≤ 0.5h 供电电压 :+ 12V 整机功耗 :≤ 30W 尺寸 :100*160MM 提供的软件 FPGA固件 PCIE信道管理及收发引擎,视频前端收发引擎,NVME读写引擎 TX2侧的Linux驱动 负责将各个视频输入输出节点映射为Linux系统下标准的V4L2设备,所有的视频数据都是经由PCIE链路由FPGA推送至TX2的DDR4内存,后FPGA中断通知TX2取视频数据 TX2侧的V4L2视频捕获Demo 演示如何通过V4L2驱动抓取前端视频 经典的算法Demo 在线学习型目标跟踪(可提供源码,作为您的开发起点) 前沿的算法Demo Yolo—基于深度学习的多目标识别框架(可提供源码,作为您的开发起点)
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页